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A system of an infinite number of spinless particles in a narrow-band periodic 
potential is treated. The dimension of the space is arbitrary, the tight-binding 
approximation is used, and it is assumed that the filling fraction is nearly one 
electron per atom. After a preliminary discussion of the Hartree approximation, 
the full Schr6dinger equation is considered and a rigorous spectral perturbation 
theory in the kinetic energy term is set up. To get rid of the lack of relative 
boundedness of this perturbation, a vacuum state is constructed and its energy 
renormalized to zero, and passage is made to an excitonic representation in 
which the quasiparticles appear naturally as local perturbations of the vacuum. 
In this representation, relative boundedness is recovered and Rayleigh- 
Schr6dinger expansions can be used to find cluster expansions for all local 
observables. 

KEY WORDS:  Mott  localization; many-body systems; spectral perturbation 
theory. 

The aim of this work is to study a problem of spectral perturbation theory 
for a quantum many-body system of particles in a narrow-band periodic 
potential. Unfortunately, the available tools are not suitable for studying 
the Hubbard model for spin -1 electrons, but can only deal with its version 
for scalar particles. Nonetheless, some of the qualitative properties of the 
system considered here should also characterize fermion systems. The 
reason is that I consider the limit in which the bandwidth for the one-par- 
ticle problem is much smaller than the repulsion energy among the elec- 
trons. In such a limit, the particles are localized and have a small overlap. 
This phenomenon is generally known as Mott's localization. (5) The Pauli 
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principle forbids two electrons with the same spin from sitting on the same 
site and this has major effects favoring an antiferromagnetic ordering of the 
spins and, perhaps, in inducing superconductivity. However, it should not 
compromise localization, but enhance it. 

The first section of this paper is introductory and contains the 
statements of all the results proven in the subsequent sections. In the 
Appendix ! prove some results about the Hartree approximation, which 
has the advantage of being easy to deal with and furnishing a correct pic- 
ture of the situation. In Section 2 I give a convergent expansion for a family 
of eigenprojections which is complete in all finite-volume truncations. Each 
one of the relative eigenspaces can be seen as containing a number of 
excitonic quasiparticles proportional to the energy gap with the ground 
state. The radius of convergence for these expansions depends on the 
number of such qnasiparticles and it shrinks to zero as this number tends 
to infinity. Moreover, I prove that the ground state in the sector in which 
there are as many particles as potential wells is nondegenerate and it is 
separated by a finite gap from the rest of the spectrum of the Hamiltonian 
restricted to this sector. This state plays an important role in the sequel and 
I shall refer to it as to the "vacuum state." The two-point function in the 
vacuum state decays exponentially fast and the momentum distribution 
function is smooth. This has to be contrasted with the noninteracting case 
in which the two-point function is not summable and the momentum 
distribution function is a delta function. Thus, somewhere, there must be a 
transition from a weakly interacting, extended regime to a strongly inter- 
acting, localized regime. Finally, I study the excitonic quasiparticles and 
prove analyticity of the dispersion law and a clustering property which 
means that the interactions among them decay exponentially with the 
separation. These applications will be discussed in Section 3. 

With regard to the method I follow, I have used some new tools which 
have also been applied in ref. 1. In fact, a rigorous study of the Schr6dinger 
equation requires that one faces the main technical difficulty of many-body 
perturbation theory: The lack of relative boundedness of the perturbation 
with respect to the unperturbed part. What I do is to perform a nonunitary 
transformation on the Hamiltonian whose aim is twofold: To construct the 
vacuum state and to pass to a representation in which the perturbation is 
relatively bounded. This permits us to use Rayleigh-Schr6dinger expan- 
sions to construct analytic families of eigenprojections. The formalism is 
devised in such a way as to yield in the most natural way cluster expan- 
sions for all local observables. Also, Hubbard (9) considered a similar 
problem and ended up with cluster expansions in the hopping parameter. 
However, he worked with a finite-temperature formalism and did not 
address the question of convergence. I shall call the nonunitary transforma- 
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tion I use a "dressing transformation," because it resembles in some 
respects a transformation of this name introduced by Glimm in the 1960s 
to renormalize the two-dimensional Yukawa model. 

1. INTRODUCTION,  NOTATIONS,  AND RESULTS 

My aim in this work is to study a system consisting of an infinite 
number of scalar particles in a periodic background. The tight-binding 
Hamiltonian on the lattice Z d is 

H;.= - -2 ~A ,+  ~ 6(x,--x+) =- -2A +6 (1.1) 
i i ~ j  

where )~ is the dimensionless and small parameter in which we perturb. A 
is the discretized Laplacian without the diagonal terms and acts as follows: 

(Au)(x) = 2 u(y) (1.2) 
lY xl  = 1 

6 is the delta function 

6(x) = [1 if x = 0  
(1.3) lo if x4=0 

i and j are labels for the particles. It is convenient to restrict the 
Hamiltonian HA to a large but finite cube A with periodic boundary condi- 
tions. The Hilbert space .~ is the Bose-Fock space of all completely sym- 
metric wavefunctions, S| 1 12(A)= .~, where N is the number of particles 
and S is the symmetrization operator. In the second quantization for- 
malism, .~ is seen as the tensor product .~ = @x~A 12(n), a basis of the copy 
of t2(n) corresponding to the site x being (In)x, n/> 0), where ln)x denotes 
the state with n particles in the site x. I am interested in the properties of 
the spectrum of the operator (1.I) which hold for 2 small and are inde- 
pendent of the size of A. I shall denote by S~N the subspace of .~ with N 
particles and with 10) the state with one and only one particle sitting on 
each site. 

To begin with, it is instructive to consider the Hartree approximation 
in the case N =  ]AI. In ref. 3 a similar problem is studied without the sim- 
plifying passage to the tight-binding approximation. Let us consider the 
problem of minimizing the expectation value of the Hamiltonian (1.1) in 
the space of all the functions of the form S l-[i~A u(xi--i) with u ~/2(7/a) of 
norm one; then we find the following Euler-Lagrange equations: 

- 2  Au(x) + ~ u(x + ),)2 u(x) = Eu(x) 
y # O  

Uff/2(2~a), Ilull2 = 1 

(1.4) 
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If we make use of the normalization condition, we can rewrite (1.4) as 
follows: 

- , ~  J u ( x )  - u ( x )  3 = eu 

u E l~(z~ ' ) ;  I lu l r~= 1 
(1 .5)  

where e = E - 1 .  In the Appendix I prove that, for every dimension d>~ 1, 
there is a 2a> 0 such that Eq. (1.5) has a solution u~, analytic in the disc 
{[21 <)~a}. This suggests that in all dimensions and for ]21 small enough, 
we find a "Mott  localized" regime in which each electron sits on a single 
atom. Of course, Mott in its papers considered only fermion systems and 
thus the use of his name may appear improper in the present context. 
However, one can extract from the solution (1.5) some information about 
fermion systems which appears to be correct at the first nonvanishing order 
in 2. In the Appendix I shall elaborate on this point in order to get closer 
to the physics of real systems. My aim in the main part of this paper will 
be to set up techniques to do perturbation theory for the original problem 
(1.1) in this localized regime. 

I introduce some notations. Let 

aa(2)= ~ aa2" (1.6) 
n = l  

be the function implicitly defined as the solution of the following equation: 

4 

aa(2) = 2d2 + 2 ~ [16daa(,~)] ~ (1.7) 
k = l  

Let pd> 0 be its radius of analyticity around 2 = 0 and let cd> 0 be the 
minimum constant such that 

aa2n ~< (ca2) k (1.8) 
m = k  

for all k>~ 1. Finally, if Xl,... , X]A I are the points of A and ~pe.~--= 
@x~A 12(~) is the wavefunction 

4 I =  Y, ~9(nx,,...,nxF~r) Inxl>~,| "'" | In~lA,>~l,~ I 
nxl '"" nxl AI 

its l l-norm will be defined as follows: 

(1 .9)  

IltPlll = ~ 14J(nx~,..., n~j~,)[ 
nXl,..-,nxlA I 

(1.1o) 
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I shall also use the corresponding /1-operator norm and denote it by 

"It ~1~ / .  
In Section 2 I prove the following basic result 

Theorem 1. For all A and all N, there is an operator R(2), analytic 
m a disc around 2 = 0  of radius >~Pa, such that 

e-R(;~)H~e R(~) = Eo(2) + 6 + V(2) (1.11) 

where E0(2) is an analytic function for t2[ < Pa and V(2) is an operator 
which annihilates the eigenstate ]0) of Ho with E , = 0  and N=IA]  
particles. V(2) is relatively bounded with respect to 3 in the following sense: 

Ij(5 + Po) -~/2 V(2)(6 + Po)-l/2t] ~e~(~) 

2de 121 
~< (max(0, 111 - N) + 2) (1.12) 

1 - cde 12[ 

where Po is the orthogonal projection onto the kernel of 6. 

This theorem has a series of applications that will be considered in 
detail in Section 3. The first of them is the following result. 

Theorem 2. For all A, all N, all integers n~>0, and for 121 small 
enough, there is an analytic family of spectral projections P,u~. of (1.1) such 
that PnNO is the spectral projection of (1.1) for 2 = 0 on the eigenspace with 
N particles and energy E, = n. The radius of analyticity of PnN)~ is not 
smaller than }1 

e -1 ca+~(En+ 1)[2+max(0,  I / I - N ) ]  (1.13) 

Moreover, for 121 small, the ground state of the Hamiltonian H~. restricted 
to the sector with IAI particles is e R(x) 10) and its energy is separated by 
a finite gap from the rest of the spectrum of Hx in that sector. 

Notice that the radius of analyticity of P,N~ shrinks to zero as E,  or 
I A I - N  gets larger. This is due to the fact that the corresponding 
eigenspace contains n +max(0,  I A [ - N )  quasiparticles, each of which has 
kinetic energy of order 2 that interact with each other and move around 
the lattice. The width of the bands originating from the eigenvalues of 
H 0 = 6 increases at a rate that should be proportional to the number of 
quasiparticles, i.e., to n+max(0 ,  IA[--N). Thus, one expects that a level 
crossing occurs very soon for very excited states and this is likely to 
originate some point of nonanalyticity for complex 2, which compromises 
the convergence of power series expansions. 
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To state the next result, I introduce some notations. Let cx and c; be 
the Bose creation and annihilation operators for a particle in the site x and 
let [0k) =PolAl~. 10), where 10) is the ground state of (1.1) for 2 = 0  and 
N =  [A[. The two-point function (0~1 C*yCx [O~)/IIO~[[ 2 depends only on the 
difference (x - y) and will be denoted by W(x - y). Finally, the momentum 
distribution function 

W~.(p) : <0;I C;Cp 10~.>/110~.112 (1.14) 

where 

11/2 " 1AIll/2 ~ eip ~Cx (1.15) cp*- IAI ~ e  'P'Yc;, Cp= 

is the Fourier transform of W ( x - y ) .  We have the following result. 

T h e o r e m  3. Foreve ryA,  e > 0 , 1 2 l < p a - e a n d f o r N = l A l t h e r e i s  
a finite, positive constant C(e) such that 

]W~o(x- y)l<.. .aa(R)C(e)exp[-m(2,~)lx-y[] (1.16) 

where 

m(2, e) = - ~ In (1.17) 

and Wx(p) is analytic in the region IIm Pl <m(2)  of C d. 

Note that, for 2 = o% ~x(p)  is equal to 6(p). For 2 large but finite, 
there is no rigorous result, but I believe that, at least in dimension high 
enough, 17/~(p) still has some kind of singularity at zero momentum 
marking the existence of a Bose condensate. In this case, there must be a 
critical value of 2 under which the interaction is so strong that the 
singularity is completely obliterated. This is reminiscent of what occurs in 
a model of interacting fermions in dimension one considered by Lieb and 
Mattis (7) (see also ref. 6). They proved that if the interaction is weak, then 
the momentum distribution function has a point of infinite steepness which 
defines the Fermi surface, while if the interaction is strong, it is analytic. 

The last question I address concerns excitonic quasiparticles and their 
mutual interactions. I shall work with the following renormalized 
Hamiltonian: 

H~ en -= e R(~')H~eR(~)- Eo(2) = 6 + V(2) (1.18) 

Adopting the terminology of ref. 2, I shall refer to the transformation 
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H;~--~H~ en as to a "dressing transformation." Let P~Nn;~ be the (non- 
orthogonal) projection 

e R(2)PnN;,eR(;t) 

The eigenspaces P~,~.~ of H~ en contain a fixed number of quasiparticles 
and one can ask which are the properties of H~ ~" restricted on such 
eigenspaces. An example of the kind of result that one can prove is given 
by the following theorem, which considers the cases of one and two hole- 
quasiparticles. 

T h e o r e m  4. 

and 

Let Ix)  and Ix, y )  denote the states 

] X ) ; . = P o ,  IA I 1,;rex 10) 

[ x, Y ) ; .=Po ,  IAI 2,2CxCy 10) 

For every 121 small enough, there are constants 0 < c~, c2, m~, m2 < oe such 
that, tbr every x~, Yl, x2, Y2 e A we have 

I~.(x21 g ~  en IXl)~l <~cle m~ix~-x=l (1.19) 

and 

I~<x=y=l H~ en [xlyl);~- ).(x2[ Hrf n Ix~>~6y,~ 

- ; . ( Y 2 I  H~e. n [Y!)~cSx~x2[ ~C2 e-m21xl Yll (1.20) 

2. E X I S T E N C E  O F  T H E  D R E S S I N G  T R A N S F O R M A T I O N  

In this section I prove Theorem 1, which was stated in Section 1. Let 
us rewrite the operator (1.1) as follows: 

H~ 5 + 2  ~ 1 - 1  1 - 
<xy5 

(2.1) 

The operators ~n, n = - 1 ,  i, 2,..., q+, and ~/- appearing here are defined so 
that 

3": [ l ) ~ l l + n )  for n =  - 1 ,  1,2 .... 

q+: I n ) ~ ] l + n )  for n = 0 ,  2, 3 .... 

q-"  [ n ) ~ [ n - 1 )  for n = 2 ,  3,4 .... 

(2.2) 
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while they annihilate all other basis vectors of/2(N).  To prove Theorem 1, 
we must establish the existence of an operator R(2), analytic for 121 small, 
such that 

e R(~)H~eR(~I IO)--Eo(2)IO) (2.3) 

where Eo(2) is a real-valued function and 10) is the state with N =  [Af par- 
ticles, each one sitting on a different site. Equation (2.3) does not determine 
R(2) uniquely and it is possible to impose the following additional condi- 
tion: The operators Rn such that 

R(2) = 

have the following form: 

2nRn (2.4) 
n = l  

R, = ~ r,(7) ~_~ (2.5) 
7 

Here 7 is a function from A to the subset of integers { - 1, 0, 1, 2,...} with 
support s(7), and 

r = l-I ~(x) (2.6) 
x ~ A  

Moreover, the following clustering property holds: 

r , ( ~ ) = 0  if d i a m ( s ( 7 ) ) > n +  1 (2.7) 

The operators (2.6) have two basic properties: First, they are complete 
in the sense that a suitable linear combination of them can map the state 
10) to any other state in .~. Second, they generate a commutative algebra. 
The first property is necessary to guarantee the solvability of the recurrence 
relations below for R, .  The second property is essential as well, because it 
keeps low the number of diagrams generated by those recurrence relations, 
thus permitting the control of the convergence of the perturbation expan- 
sions. Let us observe that apparently the three basic properties needed to 
apply the method below, i.e., clustering, completeness, and commutativity, 
are incompatible with the requirement that the dressing transformation is 
unitary. 

Notice that 

[6, R , ]  = Y' r,(y) e(~) (2.8) 
Y 
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where 

~(~) = (r s I~,0)  

The operator R] must satisfy the condition 

(2.9) 

[15, R 1 ]  10)  E 1 _1 = -  ~y{~ 10) (2.10) 
( x y >  

whence 

R I = _  ~ {~{;1 (2.11) 
< x y )  

The operators R. ,  for n >/2, are determined by the following recurrence 
relations: 

1 
[a, RA IO> = - E E 

<Xy) Sl~ ... <-J: ( J ) !  
j l  + "'" + j m = n - - 1  

• I-... + 1 , - +n+rt; ,Rj~], . . . ,  (2.12) In,  C + Cy,lx Rj~] [0> 

Note that in (2.12), only the terms with at most four commutators do 
not vanish. In fact, the only nonvanishing products of one r/ and two { 
operators are the following: 

U ~ + { - I = U ~ / - ~ * = U  
l q - ~ - 1 =  ~ 1 (2.13) 

where n >~ 1. We have 

~<2d~ 4 Irj~(7)l s(7) 
7 

~< 16d z IrjM)[ ~(~,)= 16d I1[ r* (2.14) 
y 

where 

r ) l -  Y', e(7) Irj~(7)l (2.15) 
y: s(7) n ( x y )  

where the sum runs over all V's such that s(7)c~ (x,  y )  :~ Z for some bond 

822/55/1-2-!9 
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<x, y>. Due to the translation invariance of the problem, r* does not 
depend on the bond <x, y ) .  Analogously, one can find 

rll----l-~JG1 + ~ x  +~+~;,Rj l l . . .Rj,  l IO>41 
Cxy> 

~< (a6d) k IAI r)*---ri* (2.16) 

for all k = 2, 3, 4. In virtue of (2.9) and (2.12), we have 

r* <~f(r* ..... r*_ 1) (2.17) 

for all n/> 2, where 

r* * (2.18) f ( 1  ..... r*- l )  = ~ (16d)#Jr*"'r)4 
J! +J2 + J3 +J4 = n -  1 

where # j =  # {jk r k =  1, 2, 3, 4} and we put r~ = 1. Thus the radius of 
convergence of the power series (2.4) is not smaller than that of the series 

ad(2)= f i  aa2" (2.19) 
n = l  

where a f = 2 d  and the a, for n~>2 are determined by the recurrence 
relations 

d d d a, = f ( a l  ..... a, 1) (2.20) 

To prove the convergence of the series (2.19), it suffices to notice that ad(2) 
solves formally the equation 

4 

ad(2) = 2d)o + 2 ~ [16daU(2)] k (2.21) 
k = l  

which has a solution analytic near 2 = 0. 
To conclude the proof of Theorem 1, we have to show that the 

operator V(2) such that 

e-R(~)H.~e R(~) = Eo() 0 + 6 + V(2) (2.22) 

is relatively bounded with respect to 6 in the following sense: 

2de2 
l[ ~ -  1/2 V(• )  ~ 1/21[ ~-~ ~ 1 - -  C 0e~. - -  [2 +max(0,  IA[--N)] (2.23) 
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where d-= 6 + P0, and P0 is the orthogonal projection onto the kernel of 6. 
We have 

ila-~/2v(,z)a-V~ll~o,(~.>~< sup ll~-~/2V(R)a-*12~r 10)11, (2.24) 
y: N(y )  = N 

where N(7) is the number of particles in the state ~r I0). If 9' describes an 
excitation such that N(7)= N, we have 

x~s(~,-'~ n ~ O  ,/:d(~,,y')=n 

x I(r ~-ll2e-n(X)H~eR('t)S-ll2 I~0)1 

(2.25) 

where s(7)= {x: Ix-Yl  ~< 1, ryes(7)} and 

t E 4Cx+C    
l y - - x l  = 1 

is defined so that ~x H~ = H x. Finally, if 7 and 7' are two excitations, let 
us consider all families of operators of the form {c~xc~2, ( x ~ x 2 ) e ~ } ,  
where ~ is a connected set of bonds, such that 

[I  c*~,xx2{~ I0) = const- {~, 10) 
( X I X 2 )  e . ~  

The minimum cardinality of a family like this is, by definition, d(7, 7')- If 
we introduce the notations 

Qx(2) = n__l 2"Qx;,, = e -  R(X)Hxe'~('t) - C~Cx - -~l E~ (2.26) 

from the first part of the proof we get the bound. Hence, 

(2.25)=1)4 ~2 k 2 k ]~m]l<~g'OJ(~-l/2Qx, m3-1/2j~70>l 
x e s ( ? )  n = O  ? ' : d ( 7 , ~ / ' j = n  m = n  

~<2g 121 ]s(y)l ~ (ca2)" e(7)-m[max(1,  (e(7) -n) ) ]  -l/2 
n = 0  

Since 

Is(7)l ~ 2s(7) + max(0, IA] - N) 
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we have 

5(7) ,~ 1/2 
(2.25)-~<4dl21 ~ (call21)" max(l ,  [ e ( 7 ) - n ] ) }  

n = O  

+ 2d 121 max(0, IAI - N) ~ (ca2)" 
n = 0  

The following inequality is easy to obtain: 

for all n = 1, 2,..., ~ (7 ) -  1. Thus, we have 

(2.25) ~< 

~< 

4de I,tl I~1 
+ 2dmax(0, IAI - N) 

1 - c d e  I;~1 1 -Co 121 

2de 121 
[2 + max(0, fAI - N)]  

1 -- cae 121 

This completes the proof of Theorem 1. 

3. S O M E  A P P L I C A T I O N S  

This section contains the proof of Theorems 2 4  in Section 1. 

Proof  o f  Theorem 2. Our aim is to control the Rayleigh- 
Schr6dinger expansion for the resolvent [ ( - 5 - V ( 2 ) ]  -1 through which 
one can express the eigenprojections; see ref. 4. Let us assume that 
belongs to the circle 

~7=  {(: I ( - E . I  = 1/4} 

for some n. We have 

oo 
E~;-,~- v(~)-I ~=,~-'/~ Y, G;3-1-,s3-1) -1 

r t=O 

x [,~-l/2v(2),~-w2(~,~ 1-5,~ 1) 1],,5-~<2 (3.1) 

This series converges in the l l-operator norm if 121 is so small that 

118-1/2v(2),5-'/211~,c~,<~ I1(G~-!-<$,5--') 111~1~N~< 1 (3.2) 
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If 7 is such that ~ [0) e.~ N we have 

[1(~3--1 - 56--~) -1 ~ 10)l[1 = I [ ~ -  ~(~)] 1 ['8(~)-~ tlPo~.l[~]l 

~(~) + 1 1 
~< i~_ e(7)l ~ ( g , +  1) (3.3) 

By using the bound (1.12), we see that (3.2) holds and the series (3.1) 
converges if [2[ is so small that 

1 2de t21 [2+max(O,  l A l - N ) ] - ~ ( g , + l ) < l  (3.4) 
1 - cue [21 

which is equivalent to the condition (1.13). Thus, if (1.13) holds, the 
contour integral which represents PnN~, 

(3.5) 
-- 6 -- V(2) 2zri 

exists and is analytic in 2. Let us consider the following function: 

~% 1 d~ 
dim Ran ~ - 3 - V(2) 2~i (3.6) 

where the operator is restricted to the sector with N =  ]AI particles. This 
function represents the number of eigenvalues in the sector N =  ]A] lying 
inside the circle %. Since this function is integer-valued and analytic for 121 
small, it must be equal to one for all 2 fulfilling (1.13) with N =  IAI and 
n = 0. This concludes the proof of Theorem 2. 

Proof  o f  Theorem 3. Let us rewrite the two-point function as 
follows: 

W ( y  - x)  = ( cyeRO] c~eRO ) (eR0 ] eR0) -1 (3.7) 

Due to the fact that the product of any two ~ operators on the same site 
vanishes, we have 

e~(~)= IF[ [1 + ,~"r~ ~ ]  (3.8) 
n , 7  

Hence 

= ~ +"2"c , , ~nem;.)O[cxr,l(72) ~72eR(~)O) I W ( y - x ) l  &" ~, yr.,t~'l) 

x I ( eR(~)0 [ e R(;')0 ) l  - 1 

~<~ [21 ' '+ '~ Ir.,(7~)] 1r.~(72)[ (3.9) 
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where the two sums run over all nl, n2, 71,72, such that yes(71), xEs(7), 
s(7~) c~ s(72)~ 0. In the last step we used a bound in norm for the operators 
Cyi~ and c ~ 2 .  Thus, we find [ ]2 

I W ( y - x ) l  ~< ~ 121" Ir.(7)l laa()~)l 
n >1 Ix - yl/2 

7 

,~ Ix-- yl I 

P d - -  8 n>~ I x - y l / 2  
y 

This proves Theorem 3. Note that one 
without using a bound in norm, but by a straightforward polymer expan- 
sion for the two-point function. However, I shall not discuss this point 
further here. 

Proof of Theorem 4. We have 

2 
IPa- ~[" Ir.(~)[ (3.10) 

could have proven this theorem 

= {Z)EPg~;., iv] + [V(Z), [P~v~, #vii} 10> 

In virtue of the proof of Theorem 2, we can represent the projection P ~  
with a convergent Rayleigh-Schr6dinger expansion 

pre/~2 = ~ E ( ~ _ 6 )  1 V(/],)-]n ( ~ _ 6 ) - 1  (3 .1 t )  
rt=o 

We have 

k,.2=o2~,2~i ~ [(~--6) ~ V(2) ..... [(~--6) -1 V(2), i~] "--3 10) 

{=~o, "~ .... k) ~'~ i ' lO) (3.12) = z Pn~VAT, 70; 
k oo 

Y0 

where the series on the right-hand side converges and the coefficients 
Pr%~(7, 70; k) are nonzero only if s(70) is at a distance ~<2k from s(7). Rela- 
tion (1.19) is an immediate consequence of this remark. To prove (1.20), it 
suffices to prove the exponential decay of the ll-norm of the operators 

rpren ren Q(2)= L O, IAI-a;., ~ x l ~  - 1 ] -  [Po, IAI ~,~, i x  1] I 2  t 

--  [P~,InAI-1,~, i x ' ]  r 
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and 

[ V(2), Q(2)] (3.13) 

as I x -  yt Toe. But this follows from the cluster expansion (3.12), because 
from it we see that there is a convergent cluster expansion also for (3.13) 
with the first nonvanishing term of order 0(2 IX- yl) as I x - y ]  ]" oo. QED 

APPENDIX.  THE HARTREE A P P R O X I M A T I O N  

The aim of this Appendix is to set up a strong coupling, i.e., small 4, 
expansion for the solutions of the eigenvalue problem 

- 4  A u ~  - u 3 = e~u;~ 

(A.1) 
U2 e 12(7/a), tlu~.l12 = 1 

The first result I prove is the following. 

T h e o r e m  A.1. For every dimension d~> 1, there is a 2 a > 0  such 
that Eq. (A.1) has a solution (e~, u~.) for every 121 <he  (e~, ua) is analytic 
for [21 < 2a. 

ProoL One can prove that (e~,u~) is a solution of (A.1) with 
(e)~, u~.)l~.=o = ( - 1 ,  6) if ux solves the initial value problem 

where 

du--A~ = [ - h A  - u~ - 2(1 - P.x) u~ - e~.(u~.)] -1 (1 - eua) AUx 
d2 

u;~l~=o=~ 

~x(u;3- (u~, ( -2zI  + u 2) ux) 

In fact, if u), is a solution of (A.2), we have 

du~ 
[ - 2 z l  - 3u~ - ~ ( u ~ ) ]  ~ -  ~u~  = ~( , t )  

d 

d d 
( - 2  ~ u ~ -  u]) = ~ (~(u~.) u~) 

where 

Hence, we have 

(A.2) 

(A.3) 

u~ (A.4) 

(A.5) 

(A.6) 
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From (A.6) it follows that (ex(ux), u).) solves (A.1). It remains to prove that 
(A.2) has a solution. The only fact to check is that the operator 

[ - h A  - u 2 - ez(u).) - 2(1 - P~)  u~] I(1- eua)&za) 

is invertible if ua is a solution of (A.1) and (2, ua) is in a neighborhood of 
(0, 6). This can be seen by noticing that the operator [ - h A -  u 2 -  ea(ux)] 
is invertible in (1 -Pu~)  I2(7/a) if u). is a solution of (A.1) with 2 small and 
that the norm of 2(1 - P , ~ )  u 2 is small. QED 

On the basis of this existence result, one can now make a digression 
on the spin-l/2 case and construct approximate solutions of the Hart ree-  
Fock equations. Namely, one can do the following: Let X: 77a--+ C 2 be a 
spinor-valued function such that )~*Z~ = 1, Vx e Z a, and introduce the spin 
orbitals 

0 ~ ( . )  =ZxUx( �9 - x )  (A.7) 

where u~ is a solution of (A.1) and H stands for Hartree. The wavefunc- 
tions (A.7) cannot be considered as an approximate HF solution because 
they are not mutually orthonormal. However, if one orthonormalizes them 
and computes the HF energy 5(Z, 2), one finds a result independent of the 
orthonormalization process. We have 

B2 = 0(2  4) (A.8) 

and 

b/2 = r "-}- 2 z~15 "{- 2 2 ( z J  2~5 - -  3d6) + 0 ( 2 3 )  (A.9) 

In this approximation, one can choose the approximate H F  solution as 
follows: 

f 2[Z.,:--2(Zy,)(.x)Zy]+O(23) if [ y - x [ = l ,  y-<x 
g, xriV(y) = Zx(1 - 22) + 0(24) if y = x (A.10) 

2Zx+O(2 3) if l y - x [ = l ,  y>x 
0(22 ) otherwise 

where y M x (~-x) means that Yi ~ xi (~>xi), Vi = 1,..., d. The kinetic energy 
of OxI] F is equal to 

HF gk~.(Ox ) =222 ~ [2 I(zy, Zx)12-1]+o(2 4) (A.11) 
lY-- xl = 1 

while the contribution to the total energy coming from the exchange term 
relative to two electrons 0 HF and ~b~ v sitting on neighboring sites is 

~by ) =  -222  [(Zy, Zx)12-~-O(24) (A.12) 
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Hence, the total energy corresponding to the spin configuration ;~. is 
given by 

SS(Z, 2 )=  ~, 2221(gx, Xy)12+O(24)+const (A.13) 
<xy) 

The classical Hamiltonian (A.13) is equal to the expectation value in 
the state @ x ~ z~ •x of the quantum Heisenberg Hamiltonian 

g ( 2 ) =  ~ 422 s~ 'Sy+~ +O(24)+cons t  (A.14) 
<xy > 

This is consistent with the formal perturbative result of Anderson38) Thus, 
one can conclude that the approximation scheme above which starts by 
neglecting the spin and solving the Hartree equations and then incor- 
porates the spin in such a way as to fulfill the orthonormality conditions 
gives a result which is correct at the first nonvanishing order of perturba- 
tion theory. 
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